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Abstract

TCP congestion control algorithms implicitly assume that

the per-flow throughput is at least a few packets per round

trip time. Environments where this assumption does not

hold, which we refer to as small packet regimes, are common

in the contexts of wired and cellular networks in developing

regions. In this paper we show that in small packet regimes

TCP flows experience severe unfairness, high packet loss

rates, and flow silences due to repetitive timeouts. We pro-

pose an approximate Markov model to describe TCP behav-

ior in small packet regimes to characterize the TCP break-

down region that leads to repetitive timeout behavior. To en-

hance TCP performance in such regimes, we propose Time-

out Aware Queuing (TAQ), a readily deployable in-network

middlebox approach that uses a multi-level adaptive prior-

ity queuing algorithm to reduce the probability of timeouts,

improve fairness and performance predictability. We demon-

strate the effectiveness of TAQ across a spectrum of small

packet regime network conditions using simulations, a pro-

totype implementation, and testbed experiments.

1. Introduction

Existing congestion control schemes such as TCP-NewReno [9],

TFRC [14], Cubic and many others assume the fair-share

bandwidth of a flow is at least 1 packet per round trip time

(RTT). The TCP-friendly rate of a flow [22], as defined by

the approximate packet rate of
√

3/2/(RTT
√
p), where p is

the observed loss rate, also satisfies this criterion: since the

packet loss rate p must be less than 1, the TCP-friendly rate
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is at least
√

3/2 packets per RTT.1 Conventional wisdom is

that typical networks provide sufficient per-flow bandwidth

to satisfy this assumption. However, there are a surprising

number of environments where low-bandwidth networks are

being shared by too many users, causing this assumption to

be flawed. We define small packet regime, to represent en-

vironments where a TCP’s per flow share to be less than k
packets per RTT (for a small constant k, typically 3 − 4)

and we define sub-packet regime as a specific sub-case of

small packet regimes where the TCP’s fair share is less than

1 packet per RTT.

Small packet regimes are common and increasingly im-

portant in developing regions where a low-bandwidth net-

work is often shared by many users [15, 26]. One of the pri-

mary causes for the occurrence of small packet regimes is the

content-connectivity gap. Web pages have rapidly grown in

size over the years and have out-paced the growth of con-

nectivity in many parts of the developing world. In addi-

tion, an average web page has also increased considerably in

complexity with a large number of objects assembled from

different domains. In the past decade, we have observed a

30 fold increase in these metrics, thereby triggering a large

number of competing TCP flows per single web session [36].

In contrast, connectivity has not grown at the same pace

in developing regions with relatively non-uniform growth

across regions. Global broadband penetration in developing

regions still remains much lower than in North America and

Europe and is primarily restricted to urban environments [2].

In this paper, we first analyze per-flow and aggregate be-

havior of TCP and other variants in small packet regimes

and show that apart from the well-known problems of high

loss rates and poor performance, flows experience the fol-

lowing: (a) repetitive timeouts which forces a large fraction

of flows to observe long silence periods with no packet trans-

missions; (b) extreme unfairness over short time scales; and

(c) unpredictable flow completion times. In addition, we ex-

plain why none of the standard TCP variants or known queu-

1 The only way to reduce the rate further is by adding timeouts.



ing mechanisms offer substantial performance gains in the

sub-packet regime. Some of these problems have been ob-

served in prior work by Morris [25], Qiu et al. [29], and

Juan et al. [17] where they have analyzed TCP behavior in

small packet regimes and in the context of many compet-

ing flows. However, in the broader context, we believe that

small packet regimes have not been a traditionally important

region of operation for network flows, and as a result this

space has remained relatively unexplored.

This paper primarily focuses on how we can address

many of the fundamental shortcomings experienced by TCP

flows in small packet regimes including enhancing perfor-

mance, fairness and predictability while reducing the occur-

rence of recursive timeouts. To better characterize the equi-

librium behavior of TCP in small packet regimes, we intro-

duce an idealized Markov model (variant of traditional TCP

Markov model [11]) that can capture the repetitive timeout

behavior of TCP flows. We note that since Markov models

are memoryless, modeling repetitive timeouts is not straight-

forward since one needs memory of the prior states. Us-

ing this model, we characterize the breaking point in small

packet regimes beyond which TCP flows timeout repeatedly

thereby triggering the fairness problems for a majority of

flows over short time scales.

Leveraging our model, we describe the design of Time-

out Aware Queuing (TAQ), a non-intrusive in-network mid-

dlebox solution that approximates our idealized model for

improving TCP performance, fairness and predictability in

the small packet regime. The design of TAQ is based on

three key ideas. First, we use an approximation of the model

to track the short-term behavior of every competing flow

traversing a middlebox to estimate the current state of every

flow. Second, we use an adaptive multi-level priority queu-

ing algorithm that leverages the current state of every flow

to perform fine-grained prioritization of individual packets.

To reduce the probability of recursive timeouts, we specif-

ically prioritize state transitions that could trigger timeouts

for individual flows. Under extreme conditions beyond the

TCP breaking point for a large fraction of flows, we pro-

pose an explicit admission control protocol that allows ad-

mitted flows to make progress. Our solution relies on in-

network middleboxes to enable simple and transparent de-

ployment by network operators, but preserves TCP’s end-to-

end semantics and requires no modifications to end hosts.

We evaluate TAQ through simulation and a real-world im-

plementation across a variety of small packet regimes and

demonstrate that our system enhances fairness and perfor-

mance predictability across a range of network conditions

and real-world scenarios.

2. Small Packet Regimes

In this section, we first define small packet regimes and

describe an end-user’s view of web browsing behavior in

this regime using an analysis of real-world access traces. We
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Figure 1: Scatter-plot of download times for different object sizes,

taken from a 2-hour observation period at the University’s Squid

proxy. Each raw data point is assigned to a bucket, and the values

shown here are the 10th percentile, 90th percentile, min, max, and

average values per bucket.

then use simulations to analyze TCP’s behavior in the small

packet regime to explain what makes TCP break down.

2.1 Defining the Small Packet Regime

We define a sub-packet regime as the region of TCP opera-

tion when competition between flows results in per-flow fair-

shares less than 1 full-sized segment (maximum segment

size or MSS) per observed round-trip time (RTT). More gen-

erally, we define a small packet regime of size k, which we

refer to as SPK(k), to denote the case where a per-flow fair

share is less than k packets per RTT where k is a small con-

stant. Given that most TCP flows use TCP CUBIC and begin

with a congestion window of 10, we are typically interested

in small packet regimes where k is less than 10 and typi-

cally in the range 3 − 4. A TCP flow with segment size S
and round-trip time of RTT , is in the small packet regime

of size k if both of the following conditions hold at the bot-

tleneck link, which has capacity C:

1. number of competing flows, N ≫ 1, and

2. per-flow fair share is less than k × S/RTT .

The fair share of a flow on a bottleneck link is inversely

proportional to its RTT and is also dependent on the RTT
of competing flows on that link; if all flows have the same

RTT , then the fair share is C/N . Small packet regimes

are primarily triggered in environments where the bottle-

neck bandwidth C is limited and one observes a large num-

ber of flows (large N ) creating a pathological network shar-

ing environment. Small packet regimes occur when C/N is

roughly comparable to kS/RTT for some small value of k;

for values of k less than the initial TCP congestion window

of 10, the congestion effect of the small packet regime is typ-

ically observed at flow initiation time due to packet losses.

2.2 Pathological Sharing: An End-User View

Next, we use a real world example to describe the patholog-

ical effects of the small packet regime triggered by high lev-



els of network sharing in a relatively well connected univer-

sity campus in Kerala, India. We examine the web browsing

experience of end-users in the university as observed from

the perspective of a web proxy. The university is equipped

with a 2Mbps access link to the Internet, and has about 400

computers on campus usable for Internet access. We start by

examining object download times recorded by the univer-

sity’s web proxy, constrained to a 2-hour window to mini-

mize the effects of time-of-day load variations. During this

period, the proxy recorded 221 unique client IP addresses,

and downloaded 1.5GB over the access link. Figure 1 shows

a scatter plot of download times for objects of various sizes,

ignoring cached objects and HTTPS connections, based on

logarithmically-sized buckets of object sizes. Figure 1 shows

the 10th percentile, 90th percentile, min, max, and average

download times within each bucket.

The Y-axis spread in the graphs is striking: download

times for objects vary by over two orders of magnitude! We

can observe that this variation is pervasive: many flows wit-

ness long download times across all file sizes. Download

time variation eventually decreases at larger object sizes (e.g.

1MB), but most web pages and objects reside in the size

region where variation is high. We make two observations.

First, a large number of users experience poor performance

with large download times even for very small object sizes

where the entire object can be transmitted in a few packets.

Second, the high variation in the download times for compa-

rable object sizes indicates a high level of unfairness across

flows. To understand these phenomena, we next use simula-

tions to explain TCP’s behavior in small packet regimes.

2.3 TCP in Small Packet Regimes

The behavior of TCP in the presence of many flows has been

studied in prior work [17,25,29]. What is known from these

works is that under high contention, TCP flows experience

high packet loss rates leading to poor per-flow throughput

and unfairness across flows. The small pipe case analysis in

Qiu et al. [29] also shows that a small set of flows capture

the entire bandwidth while a number of flows remain shut

off; however, flows do not exhibit global synchronization

problems and link utilization remains consistently high.

Building upon the analysis from prior work, we pinpoint

three specific observations about TCP behavior in the sub-

packet regime. First, individual flows experience repetitive

timeouts frequently that result in long silence periods dur-

ing which flows do not transmit a single packet. Second,

flows experience high levels of unfairness across variable

time scales. While long term fairness is better than short

term fairness, we observe that flows experience a random se-

lection process where different small sets of flows progress

during different short time scales. Finally, none of the exist-

ing variants of TCP and TFRC or existing variants of queu-

ing mechanisms (RED, SFQ) address these problems in the

small packet regime. We now describe these observations in

greater detail using simulations. While we have performed

several simulations under varied conditions, we present the

simplest results that motivate these observations.
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Figure 2: Long- and short-term Jain-fairness as a function

of ideal per-flow fair-share, for different capacity bottleneck

links (droptail queue with one RTT worth of delay).

Fairness in Small Packet Regimes: To illustrate the

flow-level fairness problems observed in small packet regimes,

we consider a simple simulation environment using a dumb-

bell topology with a single bottleneck link using a simple

tail-drop queue. All traffic is one-way, reflecting download-

centric web browsing. Since we wish to focus on congestion

control dynamics, which are often obscured by delayed acks,

our TCP receivers do not delay acks. The senders use an on-

the-wire packet size of 500 bytes. As the number of flows

increases at the congested link, the overall average goodput

remains consistently high (greater than 90%), for varying

link bandwidths. But fairness among flows suffers, as Fig-

ure 2 demonstrates using the Jain Fairness Index (JFI) [16].

The JFI is a value between 1 and 1/n, with 1 being the

best fairness (exactly equal shares), and 1/n being the worst

(one flow hogs the entire link). Long-term fairness is high, as

seen for the flows that run for 10000 seconds ( 17 minutes).

Unfairness over shorter periods of 20 seconds sets in, how-

ever, as per-flow fair-share drops below 30Kbps, or, with an

RTT (including queueing delay) of about 400ms, below 3

packets per RTT. The choice of a 20 second window for our

analysis is pragmatic: as expected, fairness becomes worse

with shorter windows and better with longer windows. Upon

closer examination in the pcap traces for these simulations,

we find that over 20-second time slices roughly 30% of the

flows are completely shut down and roughly 40% of the

flows consume more than 80% of the link bandwidth. These

observations lead us to the following result: while ensuring

that all flows get admitted for equal shares in the long-term,

the emergent flow management mechanism in the system

is to perform arbitrary admission control of flows within

shorter time slices. The admission control helps the few ad-

mitted flows make progress, but its arbitrariness causes the

huge download time variation seen in Figure 1.
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Figure 3: Droptail buffer sizes required for restoring fairness,

considering (20sec time slices)

Repetitive Timeouts: Consider a user who spawns a pool

of TCP connections from a web browser. We define a user-

perceived hang as an event where the user receives no data

and observes no progress on the web browser for some time.

The length of a user-perceived hang is the duration during

which none of the browser’s pool of simultaneous TCP con-

nections receives any data. We look at simulation traces of

such web transfers in the ns2 simulator on a pathologically-

shared link scenario like the one described in Section 2.2.

In this simulation, we create users that spawn multiple TCP

connections each (a web session pool) who all share a bot-

tleneck link with 1Mbps capacity. The propagation RTT is

200ms, and the bottleneck link has 50 packets worth of

buffer space (one RTT worth of delay). We omit the fig-

ure here due to lack of space, but with four flows per user

and 200 active users we find that all users perceive at least

one hang time longer than 20 seconds, and with 400 users,

almost 50% of the users perceive at least one hang longer

than a minute. While spawning fewer connections per user

helps reduce overall congestion, we also find that that fewer

connections worsen the user experience by increasing the

chance that all of a user’s connections stall at once.

2.4 Existing Queuing Mechanisms

Existing active queue management mechanisms offer lim-

ited help to prevent fairness or repetitive timeout problems

in small packet regimes. Using detailed simulations under

different small packet regimes, we observe that queueing

schemes such as Random Early Detection (RED) [10] or

Stochastic Fair Queueing (SFQ) [23] have similar aggre-

gate behavior characteristics. The fundamental problem is

that many active queue management mechanisms like RED

and SFQ require much larger buffer sizes for the number of

flows being managed to provide marginal gains in fairness

without affecting the network utilization.2 Furthermore, we

observed that increasing buffer sizes simply trades in delay

2 Without larger buffer sizes, the buffer is always full due to high contention,

and slowing flows down (e.g. RED) results in similar behavior as droptail.

and delay variance for fairness. Figure 3 shows the tradeoff

required for achieving fairness for a small part of the small

packet regime. Increasing buffers is infeasible, particularly

when the level of pathological network sharing increases

since the corresponding increases in delay can be dispropor-

tionately high. At 1000 bytes a packet, with 800 TCP con-

nections competing at a bottleneck link of 2Mbps capacity,

the maximum queueing delay necessary to achieve fairness

is 32 seconds—a delay which most traditional applications

are not equipped to deal with, and many others (such as real-

time applications) would find unacceptable. Under low load,

these large queues result also in large RTT variations that

can be problematic for applications and for TCP’s RTT esti-

mator. We simulate this scenario to help illustrate that small

packet regimes can occur even with larger bottlenecks.

3. Timeout Aware Queuing

The fundamental problem that Timeout Aware Queuing

(TAQ) aims to solve is minimize the probability of timeouts

of flows, which trigger long silence periods and is the pri-

mary cause of extreme unfairness in small packet regimes.

The key idea of TAQ is to track the behavior of every flow

at a middlebox and perform fine-grained control of packet

drops experienced by indivudal flows to minimze timeouts.

TAQ is a non-intrusive in-network solution that requires no

modifications to the end-hosts and the application layer.

Characterizing timeout behavior of a flow at a middlebox

is not easy due to three factors. First, the middlebox only

has a limited view of a flow and is unaware of the state of

the flow at the sender and the receiver. Second, there are

several TCP state transitions that lead to timeout behavior

and repetitive timeouts are even harder to characterize since

these states are not memoryless; in essence, the length of a

repetitive timeout needs memory of the length of the previ-

ous timeout value. Finally, it is very hard for a middlebox to

synchronize its observations with the flow state transitions

at the end-hosts since a middle-box may not be able to accu-

rately estimate end-to-end RTT and may observe TCP traffic

in only one direction.

To address these challenges, we first present an idealized

Markov model that captures TCP behavior in small packet

regimes. The idealized model assumes perfect knowledge

where it models the various state transitions that happen

at an end-host including window increments, decrements,

losses, timeouts and repetitive timeouts. In this section, we

first present the idealized Markov model and describe key

takeaways from these models. Through the idealized model,

we learn three important properties. First, given the loss-rate

in the network, what is the expected stationary distribution

of the state across all flows in the network; this stationary

distribution also characterizes the probability of timeouts.

Second, we infer a tipping point on the network loss rate

beyond which, the probability of timeouts dramatically in-

creases. Finally, using the idealized model, we describe a



simplified and approximate version of the idealized model

that can be used at a middlebox to classify the state of a flow

into several known categories. This information is used by

the TAQ queue management layer for packet scheduling.

3.1 An Idealized Model for Small Packet Regimes

We propose an idealized Markov model for analyzing behav-

ior of TCP in small packet regimes especially under high loss

rates and relatively small congestion windows. The model

aims to capture the stationary distribution of a set of TCP

flows across the different possible states of a flow, specif-

ically, capturing the stationary probability of a flow across

different timeout states. Our model is designed based on a

single parameter p, the packet-loss probability at the bottle-

neck link. Our model is different from and extends previ-

ously proposed models of Padhye et al. [27], Fortin-Parisi et

al. [11]. Markov models by definition are memoryless and it

is difficult to capture timeout state transitions because they

are dependent on the history of past window states of a flow.

To address this limitation, we propose an idealized Markov

model to characterize the expected behavior of flows.

We make two simplifying assumptions. (1) We assume

that the TCP flow is operating in small packet regimes, with

most flows having a small congestion window (cwnd) [3]

size. We assume a maximum window size in our model,

Wmax; the model may be extended to higher states by in-

creasing Wmax. (2) We assume that all TCP flows experi-

ence medium to high loss-rates in small packet regimes inde-

pendent of short flows or long flows. In addition, we assume

that the packet-loss probability is modeled using a single pa-

rameter p; this is a reasonable assumption since most TCP

flows are operating in very low cwnd sizes (cwnd = 1 or

cwnd = 2) resulting in packets of a TCP flow often being

single or spaced-out.

Figure 4: The Partial Model. States S1 and S2 get expanded

in the Full model.

We begin with a simple congestion window based chain

model for TCP as illustrated in the top part of the model in

Figure 4 where Sn represents a cwnd of n. There are three

possible transitions from Sn:

• Sn → Sn+1, when all transmissions are successful, result-

ing in an increase of 1 in the sender’s cwnd;

• Sn → S⌊n/2⌋, when at least one transmission is lost and

loss recovery happens through fast retransmissions;

• Sn → S1, when at least one transmission is lost and

loss recovery happens through a timeout. Note that S1

represents a timeout retransmit state, and the only way to

reach S1 is through a timeout.

Each packet has an independent loss probability p, so:

P (Sn → Sn+1) = (1− p)n (1)

The ability to recover from a packet loss without timeout

is dependent on fast retransmissions which is triggered by

3 duplicate acks (dupACKs); at least 3 packets must be

successfully transmitted in the same window to recover from

a packet loss. Therefore, no fast retransmission occurs in our

model if a loss occurs when the sender’s cwnd is smaller

than 4. While TCP-NewReno is equipped to handle multiple

losses in a window [9], studies [30–32] have shown that

both TCP-NewReno and TCP-SACK are unable to handle

beyond a threshold of losses at low congestion windows.

Also, if a flow experiences k packet losses in Sn, to recover

using fast retransmit, k loss-free round trips are required

to recover fully from all the losses [9]. In our model with

Wmax = 6, we assume that for states S4, S5, S6, we are able

to recover from at most one loss using a fast retransmission,

and 2 or more losses result in a timeout at the sender. The

probability that a fast retransmission is triggered in state Sn

is given by the probability that exactly one packet is lost,

which is np(1−p)n−1. The probability that a retransmission,

once triggered, is successful is (1 − p). Hence, the fast

retransmission transition probability from state Sn (for n =
4, 5, 6) is given as follows:

P (Sn → S⌊n/2⌋) = np(1− p)n−1 × (1 − p) (2)

In our model for Wmax = 6, there are two circumstances

under which a sender experiences a timeout: (i) when there

are two or more losses in a window, and (ii) when a retrans-

mitted packet is dropped. This probability is simply com-

puted as the residual probability:

P (Sn → RTO) = 1− P (Sn → Sn+1) − P (Sn → S⌊n/2⌋)
(3)

The upper part of Figure 4 shows these transitions put

together. Note that S2 and S3 do not have fast retransmission

transitions, and the sender never reaches a cwnd smaller than

2 through fast retransmissions [3].

3.1.1 Modeling Timeouts

Modeling timeouts is the most challenging part of our

model. A simple timeout occurs when a TCP sender hits

a timeout without memory of a previous timeout. In other

words, when hitting a timeout, the sender’s retransmission

timer has a backoff value of 1. On hitting the timeout, the

backoff value is doubled to 2. This increased backoff value

extends the next timeout period by twice the base timer

value, and “collapses” to the base value of 1 only when a new

round trip time measurement is available, which only hap-

pens when cumulative acknowledgements arrive for newly



transmitted (not retransmitted) data [28]. In our model with

Wmax = 6, we assume that we are in a simple timeout

when we transition to a timeout state from a window size

of 4, 5, 6 (states S4, S5, S6) since at least one new packet

has been cumulatively acknowledged by the time the flow

leaves state S3 and reaches S4, thereby resetting the timeout

value. For simplicity, we consider the base timeout period

T0 = 2 ×RTT . Thus, in the event of a timeout, we capture

the 2 × RTT silence period by modeling transitions from

S4, S5, S6 to the first timeout state S1 through an empty

buffer state b0; the transition to state b0 takes one epoch

(RTT ), and the transition to S1 takes another epoch.

The challenging part of the model is to capture repeti-

tive timeouts which occurs when a flow hits a timeout before

memory of previous timeouts is lost. When hitting a repet-

itive timeout, the sender’s retransmission timer has a back-

off value which is doubled again by the TCP sender, caus-

ing extended silence periods. We model these timeouts using

an aggregate state to capture the expected wait time before

a packet retransmission on a repetitive timeout. Consider a

hypothetical infinite state TCP timeout model where a flow

could have infinite timeouts. Let S1/2 represent the state if

the sender enters the timeout period with the base timer value

of 2 × RTT , S1/4 if the timer has backed-off to 4 × RTT ,

S1/8 if the timer has backed-off to 8 × RTT , and so on.

We model S1/2, S1/4, S1/8, and other other infinite timeout

states as follows. If a sender enters at S1/4, it must wait for

3 idle periods before retransmitting, and if a sender enters

S1/8, it must wait for 7 idle periods before retransmitting.

On a successful retransmission, which happens with proba-

bility (1 − p), the sender leaves the timeout state and enters

S2, since the new cumulative acknowledgment received in

response to the retransmission increases the sender’s conges-

tion window to 2. On an unsuccessful retransmission, which

happens with a probability p, the sender doubles its timer

period and enters the next longer timeout state.

To be able to incorporate these infinite timeout states

into our Markov chain, we aggregate them into two states:

a buffer state (b∗) where the sender waits for an amount of

time, and the retransmit state introduced earlier (S1), where

the timer goes off and the sender retransmits. With these

aggregated states, the following transitions are possible:

• From a small congestion window (S2, S3) entering a time-

out period, Sn→b∗;

• staying idle, b∗→b∗; and

• transition from idle period into retransmission state, b∗→S1.

The expected wait time at the aggregated buffer state, b∗,

may be calculated as follows. A TCP flow waits for 1 epoch

in S1/2 before entering the retransmit state, 3 epochs in S1/4,

7 epochs in S1/8, and so on. Thus, once in a timeout period,

the expected amount of time that a TCP flow must wait in

the timeout period before retransmitting is computed as:

Expected idle time =P (S1/2 | RTO) + 3P (S1/4 | RTO)+

7P (S1/8 | RTO) + ... (4)

To resolve equation (4), we note that:

P (S1/2n | RTO)÷ P (S1/n | RTO) = p (5)

We also know that

P (S1/2 | RTO)+P (S1/4 | RTO)+

P (S1/8 | RTO) + ... = 1 (6)

Combining equations (5) and (6), we get

P (S1/2 | RTO)(1 + p+ p2 + p3 + ...) = 1

P (S1/2 | RTO) = (1− p) (7)

Equation (4) may now be resolved using equations (5) and

(6) to give the expected idle time in the timeout state as

follows:

Expected idle time = 1(1− p) + 3p(1− p) + 7p2(1− p)+

15p3(1− p) + ...

= 1/(1− 2p) (8)

Thus,

P (b∗ → S1) = 1/(Expected idle time in b∗)

= 1− 2p (9)

Consequently, the probability of staying idle,

P (b∗ → b∗) = 2p (10)

Finally, on a successful retransmission in S1, the sender

enters S2 with a probability of (1−p), while an unsuccessful

retransmission leads the flow back into the timeout state, b∗,

with a probability of p.

To model repetitive timeouts more precisely, we need to

break up the timeout retransmit state S1 further across mul-

tiple backoff states. As an example of an expanded model

illustrated in in Figure 5, we can derive a much more accu-

rate but complex picture of the timeout states. In this exam-

ple, the original b∗ state gets expanded to capture different

stages of timeouts: with at least 1 backoff, at least 2 back-

offs and atleast 3 backoffs. Since Markov models are mem-

oryless, we need to different set of states to capture these

transitions. The transition probabilities can be derived in a

similar manner as before but the expressions become more

complex. Due to space constraints we omit the details of this

calculation from this paper.



Figure 5: The Full Model. This model is limited to a max

cwnd of 6, and can be easily extended to larger cwnds.

3.1.2 Validating the Model

We have extensively validated our model across a variety

of small packet regimes and were able to confirm that the

model provides an accurate picture of the stationary prob-

ability of flows across different states. We present a brief

summary of results in this section based on ns2 simulations

over a bottleneck link with flows having variable RTTs and

using TCP SACK. Figure 6 shows results of the actual prob-

abilities for simulations under a variety of link bandwidths

(up to 1Mbps), The buffer size for each simulation was set

to an RTT’s worth. Note that “0 sent” is the sum of prob-

abilities for all the b* states in the model where the flows

do not transmit any packets, and similarly “1 sent” and “2

sent” represent the sums of the S1 states and S2 states, re-

spectively. Overall, simulation results agree well with our

model, especially for p > 0.05. These graphs were com-

puted for Wmax = 6 and for lower values of p. Many flows

have higher window sizes, but for small packet regimes we

are only interested in small cwnd. We also ran simulations

under RED and SFQ AQM schemes, and obtained similar

agreement with the model.

3.2 Applying the Idealized Model

The model leads to several important takeaways that influ-

ence the design of TAQ. First, given a loss probability p,

the model provides the complete stationary distribution of

a flow across all the possible states. This is a potentially

powerful summary data that a middlebox can use for fine-

grained queue management and decision making. Specifi-

cally, given p, the middlebox can estimate the probability of

timeouts and repetitive timeouts for any given flow. Given

different flows operating in different states, TAQ can use the

predicted state of a flow to preferentially drop packets to en-

hance fairness across flows. In essence, TAQ aims to achive a

Fair Queuing-like fairness model by exercising fine-grained

control of packet drops across competing TCP flows.
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Figure 6: Validating the model with different bottleneck

bandwidths

Second, under high levels of contention, when the loss

rate jumps beyond 10%, we observe from the model that the

probability of timeouts in the stationary distributions rapidly

increases. Under such settings, a large fraction of flows will

remain in timeout states. Unfortunately, there is inherent un-

fairness in the flows that remain shut out for short or ex-

tended time periods resulting in an arbitrary flow admis-

sion control. To ensure fairness under such high contention

regimes, TAQ introduces an explicit admission control pol-

icy (to partially limit contention over short time scales) and

guarantee progress for the admitted flows.

Third, our idealized model, while accurate, is too brit-

tle for practical use. If we were to implement the model in

a middlebox, slight differences in TCP versions, TCP im-

plementations (e.g. retransmission timeout values), and in-

accuracies in real-world RTT estimation can cause wildly

incorrect predictions. Rather than apply the model directly,

we abstract our idealized model into a simpler approxima-

tion that captures the behaviors generally characteristic of

all TCP flavors in small packet regimes. The approximate

state model in TAQ is a simplification of the idealized TCP

model along two dimensions. First, the approximate model

uses middlebox observations of a flow behavior to learn the

current state of a flow. Second, the middlebox determines

the possible next state of a flow as a potential consequence

of an action (successful or unsuccessful packet transmission)

at a middlebox. These two inputs are critical for fine-grained

packet control at a middlebox.

Finally, we note that from the model that loss of re-

transmissions or new transmissions immediately following

retransmissions are particularly expensive as they lead to

backoffs and extended silence periods. This requires TAQ to

specifically handle packet retransmissions with higher pri-

ority above normal packet retransmissions. However, simple

retransmission packet prioritization can be detrimental since

such a policy under high flow contention can push a ma-

jority of flows into recovery state where they are constantly

recovering from packet losses; in simpler terms, all origi-



nal packets get dropped and only retransmitted packets get

transmitted. Next, we elaborate on how to construct a useful

approximate model of TCP states.

3.3 An Approximate Model

A middlebox may not be completely aware of the exact con-

gestion state of a flow as stored at the TCP sender. To apply

the idealized model in practice at a middlebox, TAQ moni-

tors the progress of every flow across epochs of a flow. An

epoch of a flow in TAQ is the middlebox perceived RTT of

the flow. In the conventional mode of operation, TAQ ob-

serves two-way traffic (including ACKs), thereby making it

relatively easy to estimate RTT. If TAQ only observes one-

way traffic, TAQ uses a simple and approximate epoch esti-

mation approach where the initial epoch estimate is set as the

time period between the SYN and the first data packet. Given

that TCP flows in their normal states (not timeouts) start with

short bursts in the beginning of each epoch, TAQ revises the

epoch estimates (using a weighted moving average) by ob-

serving short packet bursts at the beginning of every new es-

timated epoch. Given the epoch size and the aggregate loss

rate at the bottleneck, the middlebox can track the number

of packets within each epoch and predict the probability that

a flow could potentially hit a timeout state in the following

epoch. The middlebox tracks the following parameters of a

flow in each epoch: (a) number of new packets; (b) highest

sequence number; (c) number of retransmitted packets and

(d) packet losses in previous epoch. TAQ uses the difference

between the highest sequence numbers across epochs as a

measure of the progress of a flow. Using these parameters,

TAQ determines the approximate state of a flow across one

of the following states:

• Slow start: This refers to a flow that is exponentially in-

creasing its window and is characterized by a significant

growth in the number of new packets across each epoch.

• Normal state: This refers to the case where the flow expe-

riences no losses at the TAQ queue and the number of new

packets shows a small linear growth (or is roughly similar

to the previous epoch).

• Explicit loss Recovery state: The middlebox explicitly

drops a packet corresponding to a flow and should expect

a reduction in the number of packets observed in future

epochs. After a packet loss/drop, the middlebox primar-

ily witnesses retransmission packets at the middlebox with

very few packets in each epoch until the flow recovers

from the loss to the normal state. Typically, even with TCP

SACK, in a recovery phase, very few packets are retrans-

mitted per RTT by a TCP flow; the typical number is one.

• Timeout silence state: When a flow hits a timeout, the flow

hits a silence period with no packets. The typical RTO

value is dependent on RTT plus a multiplicative factor

of the variance in RTT. A timeout might trigger either

a timeout silence state followed by recovery or a direct

transition to a recovery state.

• Timeout Recovery state: After a timeout, a flow typically

retransmits one or more packets. Upon successful retrans-

mission of packets that triggered the timeout, the flow can

recover to the slow start phase with a small window.

• Extended silence state: The loss of packets during a time-

out recovery phase forces a flow to hit a repetitive timeout

and the flow hits a silence period that lasts multiple epochs.

Figure 7: The Approximate Model of a flow at a Middlebox

Figure 7 illustrates the state diagram that our middlebox

uses to track the state of a flow across the aforementioned

states. For completeness, we introduce one more dummy

silence period state to consider the case where flows in

normal state do not transmit any packets, since they may

have no more packets to send (for example, HTTP pipelining

resulting in several objects transmitted on a single flow).

This model represents an approximation of the idealized

states of a flow as represented in the idealized model. The

different states corresponding to the window sizes are rep-

resented by a single normal state and the number of packets

observed within an epoch is reflective of the approximate

window size of the flow. This information is stored sepa-

rately and is not associated with the state transition diagram.

The three timeout states can be directly mapped to the three

timeout states in each stage of a repetitive timeout in the full

version of the idealized model. Similarly the explicit loss re-

covery state can be mapped to the intermediate states before

the timeout states. In addition, we do not maintain any prob-

ability transitions in this approximate model; instead, in the

approximate model state transitions are driven by observa-

tion of the four state parameters.

4. TAQ Queue Management

The central design goal of TAQ is to leverage the model

in Figure 7 to control the behavior of a flow by altering

its packet drop policies on a per-flow basis. The idea in

TAQ is to use the number and nature of packet losses at

the middlebox queue to predict the next state of a flow and



determine if the middlebox packet drop action could trigger

the flow to a timeout or a repetitive timeout.

Each of the states corresponding to a flow are associated

with memory for queue management purposes. The slow

start and normal states are associated with the number of

new packets observed in an epoch as a rough measure of the

window size. The explicit loss recovery state and the timeout

recovery states maintain information of how many packets

were dropped and correspondingly, the number of dropped

packets at the TAQ queue that need to be recovered. The si-

lence periods and extended silence periods maintain memory

of the previous state of a flow at the last transmission.

4.1 Predicting the Next State

A central goal of TAQ is to predict the effect of a packet loss

on the next state of a flow. Here, we assume that TAQ has

control over the losses that occur on the bottleneck link but

may not have any control that occur on other links. When a

flow experiences losses beyond the losses at a TAQ queue,

TAQ automatically adjusts the state of the flow in future

epochs to adjust for this behavior. We outline the effect of

different types of packet drops and no losses on a flow.

No losses: In the event a flow is in a normal or slow start

state and does not experience any losses during an epoch, the

expectation is for the flow to remain in those states unless

there are external packet losses (outside of the bottleneck

link). A flow in recovery state experiencing no losses may

return back to a normal state depending on the number of

observed retransmitted packets in the specific recovery stage

and the number of known dropped packets in this recovery

stage. A flow in timeout recovery state that has successfully

retransmitted lost packets will recover to a slow start state.

Normal packet loss: A packet loss in TAQ is defined as

a normal packet loss if the packet dropped is a new packet.

A packet loss can trigger a flow into a fast retransmit or in

a recovery state. While flows can typically quickly recover

from a single loss, multiple losses are much harder to deal

with. In TAQ, we maintain knowledge about the number of

packet drops experienced by a flow and track the recovery

progress of a flow by tracking the number of retransmitted

packets that immediately follow in future epochs. In TAQ,

flows that have experienced packet losses in the current or

previous epochs are given higher priority in future epochs for

retransmitted packets and existing packets within the sliding

window to prevent timeouts and bursty losses.

Retransmitted packet loss: When a retransmitted packet is

dropped, a flow hits a timeout state. TAQ tracks retransmit-

ted packets to specifically prioritize these packets to prevent

timeouts for flows. In the inevitable case where a retrans-

mitted packet needs to be dropped due to lack of network

resources, TAQ needs to keep a track of the previous state of

the flow for the last normal transmission, prior state of the

flow (length of silence period) and number of packets in the

recovery stage. In essence, any retransmission from a flow

in an extended silence period should be prioritized over a re-

transmission from a flow in a silence period which should be

further prioritized over a first retransmission. TAQ uses this

length of the silence period and the last normal transmission

to determine the priority of a retransmitted packet.

4.2 TAQ Multi-class Priority Queuing

TAQ uses a multi-class priority queue scheduling policy

which is primarily centered around maintaining the balance

between flows hitting timeouts and ensuring fairness across

individual flows. TAQ can adopt either the standard fair-

queuing based fairness model or can support the propor-

tional fairness model using the RTT estimates of flows.3

TAQ maintains several queues corresponding to different

classes of packets:

• Recovery Queue: The recovery queue corresponds to only

retransmitted packets of flows. The recovery queue oper-

ates as a priority queue where the priority of a packet is

inversely proportional to the length of the silence period

of the flow; the longer the silence period, the higher the

priority of the packet in the recovery queue.

• NewFlow Queue: This queue corresponds to new flows

that have just begin transmissions and are in slow start.

• OverPenalized Queue: This queue corresponds to nor-

mal packets of flows that have been experienced multi-

ple packet drops in the past and current epochs cumula-

tively; the goal of treating this flows separately is to not

over-penalize these flows, but to minimize timeouts and

repetitive timeouts.

• BelowFairShare Queue: This queue corresponds to normal

packets of flows whose current transmit rate is below the

fair share; here, fair share can be calculated based on either

the fair queuing model or the proportional fairness model.

• AboveFairShare Queue: This queue corresponds to normal

packets of flows that are sending above their fair share.

TAQ uses a multi-level hierarchical queuing algorithm to

manage these 5 different queues which we elaborate next.

Level 1: At the top level with the highest priority is

the recovery queue that operates as a strict priority queue

where recovery packets are prioritized based on the previous

silence periods of the flows. To prevent the scenario where

a large fraction of flows operate in recovery state alone, this

queue is capacity limited so recovery packets cannot occupy

more than a certain amount of network resources.

Level 2: At Level 2, TAQ considers the BelowFairShare,

NewFlow and OverPenalized queues and allocates all these

equal priority levels. Within each queue, we use a simple

FIFO policy. We explicitly limit the NewQueue capacity

to limit the number of new connections in the system to

specifically prevent congestion collapse of admitted flows.

This is useful for implementing admission control policies of

new flows. Between the OverPenalized and BelowFairShare

3 We focus on the standard fair queuing based fairness model in this paper.



queues, we proportionally allocate resources based on the

queue demands.

Level 3: At Level 3, the AboveFairShare queue operates

as a FIFO queue with strictly lower priority compared to

Level 2 flows. Once a flow is penalized with more than 2

packet drops in an epoch, the flow is automatically assigned

to the OverPenalized queue.

There are several reasons we adopt this 3-level multi-level

hierarchical queuing algorithm in TAQ. First, the first level is

strictly designed based on reducing the probability of time-

outs. This Level is given strictly higher priority compared

to Level 2 and 3, though the net output rate is restricted to

limit network overload with packet retransmissions. Second,

Level 2 consists of 3 different flows which are hard to dif-

ferentiate. Hence, these queues are associated with similar

priority levels though the NewQueue is restricted to curtail

rate of admission of new flows. Finally, flows above their fair

share are given the lowest priority to maintain fairness.

4.3 TAQ with Admission Control

One of the key takeaways from the model is the dramatic

increase in the probability of timeouts of flows beyond a

loss rate of pthresh = 0.1. TAQ monitors the packet drop

rates at the queues and if the drop rate exceeds this thresh-

old, TAQ adopts an admission control policy to limit the

flow contention to reduce the loss rate below the critical

threshold. Without admission control, existing flows could

spiral deeply into the small packet regime where a majority

of a flows may remain in repetitive timeouts and not make

progress regardless of the underlying queuing algorithm.

When applying admission control, we need to understand

the application level dependencies between flows given that

several real-world applications generate multiple TCP flows

for each session. Middleboxes perform admission control at

the granularity of flow pools, which is a set of inter-related

flows corresponding to the same application; the canonical

example being HTTP web traffic. In the case of HTTP/1.0
a separate TCP connection is setup for each request, and in

HTTP/1.1 requests may be pipelined. A typical web ses-

sion may simultaneously retrieve content from several web

sites in parallel. We define a “flow pool” as a collection of

inter-related flows from the same source to different desti-

nations that are all initiated within a short time-period (e.g.

a few seconds). For simplicity, we assume that users do not

switch sessions across applications within a few seconds.

Admission control can be performed as a separate process

on NewQueue by limiting the number of new connections

that are queued in this queue. A flow is admitted if: (a) it

belongs to a flow pool that has already been admitted, or (b)

it belongs to a new flow pool and the current loss rate is less

than pthresh (in practice, we use a threshold slightly smaller

than pthresh as a congestion avoidance strategy). After a

flow pool is admitted, the middlebox tracks the status of

each individual flow within a flow pool. However, TAQ can

implement fair sharing across flow pools instead of across

individual flows to maintain fairness across applications.

Once a flow pool is identified, TAQ’s queuing policy does

not change except the fair share calculation.

If a flow is not admitted, in certain applications such as

web browsing, one can make simple modifications to pro-

vide feedback to the user on the expected wait time or a

spoofed HTTP 503 “Service Unavailable”. If the middlebox

acts as a proxy (instead of a transparent proxy), it can pro-

vide useful feedback as an appropriate response as maintain-

ing a visible queue of requests with expected wait times and

finish times for each browsing request. Such an approach has

been integrated in prior work on delay-tolerant web brows-

ing solutions [7]. In a feedback oriented solution, after a spe-

cific wait time, Twait, the user is guaranteed admission for

one flow pool. In practice, we set the value of Twait to be

small (few seconds) and less than the TCP SYN connection

timeout; hence, the TCP connection request is still alive in

timeout phase and a future SYN retry can be admitted.

4.4 TAQ in Practice

TAQ can also be implemented using only a single middle-

box which sits prior to the bottleneck link. TAQ can be im-

plemented at a router level or can be realized using a combi-

nation of software routers or transparent proxies (that tunnel

traffic between them) at either end of a constrained link.

For simplicity of discussion, we assume that we have

control over the low-bandwidth network resources and the

underlying channel has very low loss rates and all losses are

caused due to congestion at the middleboxes. In reality, if

the middleboxes are overlay nodes where the traffic between

them experience unpredictable losses due to cross traffic,

then we would build our entire solution on top a system such

as OverQoS [35], which provides a controlled-loss virtual

link abstraction with very low loss rates between the two

overlay nodes. Unless we have control over which packets

are dropped at the middleboxes, it becomes fundamentally

hard to provide any form of quality of service in these highly

constrained small packet regimes. In both the router-level

model or the OverQoS-like overlay network model, the TAQ

nodes are constantly aware of the available bandwidth on the

underlying network. This information is in turn used in the

multi-level queuing algorithm of TAQ.

5. TAQ Evaluation

We implemented TAQ both in ns3 and also as a collection

of elements in Click [18] (with admission control). In our

experience, because most machines found in developing re-

gions run Windows we also have a separate implementation

of TAQ in 1300 lines of C# code using the SharpPcap library

(without admission control).4

4 We did currently implement admission control here because it would

“break” existing HTTP/browsing semantics and we would have to also de-

ploy a separate intermittency aware browser (e.g. RuralCafe [7]) to accom-

modate this change.



To evaluate the effectiveness of TAQ, we use both ns3

simulations and a physical testbed. In simulation we con-

tinue to use the same basic dumbell topology as the simu-

lations results presented previously. In our physical testbed

we setup a simple 100Mbps Ethernet/switched testbed with

four 64-bit 2.8Ghz Intel Core Duo machines with 4GB mem-

ory running Linux Mint 15 Olivia to ensure that our testbed

generally reflects the relatively underprovisioned machines

found in our target environment. For our experiments we em-

ulate a bottleneck link with a specific bandwidth and delay.

We conduct a similar set of experiments in both our simula-

tions and testbed across a variety of synthetic and real work-

loads. For our real workloads, we use two types of traces:

(a) web access logs of users in low bandwidth environments

in India and Ghana; (b) tcpdump network traces in India and

Ghana to understand network bandwidth conditions of real

world networks. Where possible, we emulate these condi-

tions in our emulated and simulated network environments.

We primarily compare TAQ with Droptail (DT) queuing

since as discussed earlier in Section 2, most queuing mech-

anisms are not suited for these environments and Stochas-

tic Fair Queuing (SFQ) and Random Early Detection (RED)

offer similar results to DT. In small packet regimes, almost

every flow operates over very small TCP windows and has

very few packets under contention within every epoch. At

any time, we observe that the number of outstanding packets

corresponding to a single flow in the buffer is very small, if

not often just zero or one packets. At that granularity when

there is very limited choice across flows, queuing mecha-

nisms like SFQ have limited scheduling choices and offer

similar results as Droptail.

As a summary of our evaluations, we show that across a

variety of small packet regimes, TAQ consistently achieves

the following results: (a) improves short-term fairness; (b)

provides smooth and predictable evolution of flows; (c)

gracefully handles the introduction of short-flows; (d) pro-

vides more predictable download times; and (e) admission

control can provide predictaiblity gains under heavy con-

tention in small packet regimes.
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Figure 8: Short-term Jain-fairness for TAQ (20sec slices)

5.1 Short-term Fairness

Figure 8 shows the simulation results from typical short-term

fairness characteristics of TAQ over 20 second time slices

across different bottleneck link configurations. Comparing

these results with Figure 2 for DT, we observe that TAQ im-

proves fairness characteristics across the entire spectrum of

bandwidth configurations in comparison to DT. Across even

very low bandwidth conditions, TAQ achieves a better Jain’s

fairness index. In many cases, the fairness achieved by TAQ

is higher than 0.8 which clearly shows that TAQ maintains

the goodput of the individual flows within a restricted range

without affecting the link utilization; in most cases, the link

utilization is close to 1. An interesting observation is that

when a flow experiences a drop at a TAQ queue, the over-

all link utilization is not affected by this drop since the loss

occurs before the link at the TAQ queue.
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Figure 9: Flow Evolution for DT and TAQ

5.2 Flow Evolution

To further elaborate on the fairness, we contrast the evolu-

tion of flows across different states in TAQ with DT. Fig-

ure 9a and Figure 9b show the simulation results for flow

evolution of DT and TAQ, respectively, for 180 flows across

a 600Kbps bottleneck link configuration. Here, we classify

flows into four categories based on the evolution from pre-

vious state to the current state: (a) Maintained flows reflect

the flows that continue to make progress remaining in a nor-

mal state or a slow start phase across continuous epochs; (b)

Dropped flows signifying a transition from a normal state to

a silent state due to packet drops (just experienced timeout);

(c) Arriving flows signifying a transition from a silent state

to an active state of recovery or normal; (d) Stalled Flows

that continue to remain in repetitive timeout state. We ob-

serve that in TAQ, the number of flows in a stalled state is

nearly zero. indicating that TAQ nearly eliminates the num-

ber of flows that experience even 2 continuous silent epochs.

We also find that TAQ increases the number of flows in the

maintained state compared to DT signifying a larger num-

ber of flows that make continuous progress in TAQ as op-

posed to a highly bursty behavior in DT. This result shows

that TAQ enhances the performance predictability of flows.

Finally, TAQ has a nearly no states transitioning from Ar-

riving and Dropped flows across each epoch and most flows

are active within even 2 epoch windows. Overall, we observe



that flows experience a much smoother evolution under TAQ

than in DT. We repeated this analysis and found similar re-

sults under a wide variety of workloads and network envi-

ronments (including SFQ and RED).
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Figure 10: Behavior of TAQ with short flows

5.3 Short Flows

The use of NewFlow Queue in TAQ enables TAQ to smoothly

and gracefully handle short flows. Specifically, if a flow

transmits a very small number of packets, TAQ can auto-

matically lower the flow completion time. To demonstrate

this, we introduce a mixture of short flows of variable length

(number of packets) with a background of long-running

flows to measure their effect. Figure 10 shows the down-

load times of different flows as a function of number of

packets (in this experiment, we introduced 32 short flows

over a 1Mbps bottleneck with 50 long flows - 20Kbps fair

share per flow). We observe that short flows with small win-

dow sizes have more predictable download times that vary

roughly linearly with the number of packets of the flow; the

download time has larger variations once the flow blurs the

boundary of a short flow.

5.4 Predictability of Web Flows

To show that TAQ improves fairness and is able to achieve

good rates in the real world and with an underprovisioned

server, we use our C# implementation and artificially con-

strained the network bandwidth, latency, and queue size at

the middlebox to be generally consistent with our trace pa-

rameters. On the server machine we ran a standard Ruby web

server and routed packets to our TAQ middlebox implemen-

tation connected to the LAN with two 100Mbps Ethernet

cards. On the two designated client machines we run a Ruby

script that opens long lived requests to the webserver. Fig-

ure 11 shows the Jain fairness as a function of the per-flow

fair-share for 600Kbps and 1000Kbps links. As expected, we

observe that even on realistically basic hardware TAQ is able

to easily handle these flow rates.
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Figure 11: Short-term Jain-fairness for TAQ on our testbed

(20sec time slices)

5.5 Admission Control and Web Predictability

To demonstrate the effectiveness of admission control and

how it positively impacts web flows in a real world setting.

We consider an environment similar to the network setting in

Figure 1 where we have clients spawn web requests based on

a real-world access log. We specifically replay a 2 hour peak

load log. The physical setup is identical to the previous sce-

nario. Here, in our client scripts our two clients are each con-

figured to open up to four connections at a time, and request

objects as soon as possible rather than the logged request

time to simulate the dependence of a request on previous re-

quests. During transient periods, there may be unfairness due

to overbooking due to the fact that the admission controller

may not admit new flows since it must honor commitments

to allow flows belonging to an admitted flow pool; however

the same flows are admitted within a short time period (since

we emulate flows which are not admitted to constantly retry

till admission). We specifically include the additional wait-

ing time for flows not initially admitted as part of the overall

download times of flows.

Figure 12 is a CDF of time taken to download objects of

different sizes (10KB buckets) for the same 1Mbps network

configuration as before. We observe that TAQ significantly

reduces the overall object download time in the median and

the worst case (inclusive of the additional waiting time for

non-admitted flows). The gap is particularly pronounced for

short flows where TAQ reduces flow completion time by a

factor 5 for both the median and the worst case. For large

objects, TAQ reduces the overall download times by a factor

2 for the median and by a factor 1.6 in the worst case. We

also observe that the overall variance in the download times

are significantly reduced across the board.

6. Related Work

The past three decades have seen a tremendous amount of

work on analysis of TCP congestion control. We outline only

work closely related to ours.
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Figure 12: Object download times CDF for TAQ with admis-

sion control in comparison to a droptail queue for small and

medium sized objects

The earliest work on pathological-sharing among TCP

flows by Morris appears about a decade ago [25]. Morris rec-

ognizes the limitations of TCP operating in regimes where

the fair share is under a single packet per round trip time and

provides some insight into observed flow behavior and ag-

gregate behavior at the bottleneck. Our paper is an extension

of this previous line of analysis.

TCP’s loss of fairness under pathological sharing is not a

surprise, and has been noted in [17,21,29]. We build on these

previous observations, and contribute a more systematic un-

derstanding of the dynamics that dominate in these regimes.

Even in simply observing fairness results from simulations,

we find that the emergent admission control behavior in the

short- to medium- term, and long-term fairness are novel ob-

servations that inform our understanding of the problem.

Prior work in stochastic models for TCP, such as [1, 4, 6,

19, 20, 22, 24, 27, 33], derive analytical expressions for the

steady-state throughput of a TCP flow based on its round

trip time and loss probability. Of these models, ours is closer

to [6, 27], which consider a discrete-time model and a dis-

crete evolution of the window size. The Padhye model is a

much better fit when the packet loss rates, p, are relatively

small; at high values of p, however, we observe extended and

repetitive timeouts, the dynamics of which are not captured

in detail in the Padhye model. While the Padhye model pro-

vides the expected average throughput, our stationary distri-

bution is a more complete characterization of the state of a

TCP connection. Finally, one subtle difference is that, the

value of p in Padhye model represents the probability of loss

indication (or loss episodes) while we explicitly model the

(in)ability of TCP to recover in the face of a bursty loss.

Our TCP model supplements Markov models for TCP

that have been proposed in [11, 12]. These models focus

on TCP behavior when the packet loss rates are relatively

small. Specifically, Fortin-Parisi-Sericola (F-PS) [11] build

an extensive model that is built to yield expected goodput.

Our model yields a detailed characterization of the states of

a TCP connection, which is harder than finding the expected

goodput. Yet, despite the complexity of modeling repetitive

timeouts, our model is simpler and more intuitive than the

F-PS model because we assume the sub-packet regime, high

loss-rates, and small windows.

Work in low bandwidth access links typically assumes

a low degree of sharing at the link. For instance, Spring et

al. [34] and Andrews et al. [5] both propose solutions for

improving performance at low bandwidth access links, but

both operate under low degrees of sharing and assume per-

flow fair share of at least 1 packet per RTT. In mainstream

networking literature, user-perceived web latency has been

a concern [8], but these works focus on link losses and la-

tency rather than small packet regimes caused by bottleneck

bandwidth. Han et. al. consider more flexible transports to

accommodate diverse application and network requirements

that emphasizes dynamic adaptation based on pricing [13].

7. Conclusion

Three factors have led to the emergence of small packet

regimes: rapid growth in web content complexity, limited

growth in connectivity, growth in network sharing. The lim-

ited growth in connectivity is particularly true in developing

regions and mobile web contexts where TCP flows break

down in small packet regimes resulting in unfairness, long

download times, repetitive timeouts and long hang periods.

To partially alleviate this problem without any modifica-

tions to the end-hosts, we propose Timeout Aware Queuing

(TAQ) as a middlebox solution that can address many of the

aforementioned problems of TCP flows in these regimes.

Since TCP is inherently not designed to operate in these

regimes, designing a middlebox-based solution to alleviate

the problem is a challenging proposition. TAQ leverages a

detailed TCP flow model to predict state transitions of flows

at a middlebox by performing fine-grained packet drops cou-

pled with flow tracking to reduce the impact of timeouts. To

the best of our knowledge, our work is the first to formally

characterize the small packet regime and propose measures

to address TCP problems in these regimes. In the future we

plan to investigate end-host congestion control mechanisms

for small packet regimes.
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